

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Consequences of Dependent and Independent Variables based on

Acceptance Test Suite Metric Using Test Driven Development Approach

1st Myint Myint Moe

Faculty of Information Science

University of Computer Studies (Hpa-an),

Kayin State, Myanmar

myintmyintmoe.ucsy.1971@gmail.com

2nd Khine Khine Oo

Faculty of Information Science

University of Computer Studies, Yangon

Myanmar

khinekhineoo@ucsy.edu.mm

Abstract

The fundamental of software development was

Test-Driven Development but the individual tests must

be carried out previously the production code. To

research, the consequence of test-driven development

on product code quality and developer productivity

was the destination of this paper. This system builds

the acceptance test suite metric of regression analysis

to assess the impact of the process on dependent

variables and independent variables. This paper’s

results observed the positive effect of external quality

over function of the number tests, and slightly

decrease the effect of developer productivity over

function of the number of tests. TDD can affect

advance software products’ quality, also mend

programmers’ productivity. TDD undertook to help

the delivery of high-quality products, both operational

(fewer bugs) and technical perspective (cleaner code)

while improving developers’ productivity. TDD affects

to less defects and fewer debugging period which

correct code can be certified by writing tests first and

thus serving the developer get a finer understanding of

the software requirements.

Keywords-- Test-Driven development, Unit test, no: of

tests, External Quality, Developer Productivity

I. INTRODUCTION

By driving from Extreme Programming (XP)

and the primary of the Agile Platform, the foundation

fragment of the agile code development approach was

Test-driven development (TDD). The possibility of

TDD describes various positive effects. TDD isn't a

testing approach, yet rather a development and design

method in which the tests are composed before the

production code. During the implementation, the tests

are added step by step and when the test is passed, the

code is refactored to improve the inside structure of

the code, without changing its outside behavior. TDD

cycle is iterated until the whole functionality is

performed. An automated segment of code was a unit

test that applied a part of work in the system and a

unique idea about the execution of that part of work.

For each little function of an application, TDD begins

with designing and developing tests. First, the test is

created that distinguishes and approves what the code

will do in the TDD approach. Make the code and after

that test in the typical testing process. The developer

can be self- assurance that code refactoring is not

destroyed any existing functionality for re-executing

the test cases. Before the actual development of the

application, TDD is a process of evolving and running

automated tests. To create higher code quality,

developers can motivate by coding standards,

analyzing code automatically, doing code reviews and

refactoring legacy code. For bugs and defects count,

the system works by testing and debugging.

This paper is structured as follows. The issue of

Test-Driven Development initiated in Section (1). The

obviousness of the test numbers, quality of external

code and, developer product on test-driven

development (TDD) expressed in Section (2). Section

(3) describes related work. Section (4) presents a

framework of test-driven development. The

contribution of the relation of the test numbers, quality

of external code, and developer product is described in

Section (5). Next, observational analysis of the

proposed system is discussed in Section (6). Section

(7) expresses compatibility of results. Finally, Section

(8) concludes this paper.

II. OBJECTIVES

One of the approaches of software progression

was test-driven development. In recent years, this

approach has become familiar in the industry as a

requirements specification method. Before code

development, developers encourage to compose tests.

TDD is provided to carry the code clearer, simple and

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

bug-free. The goal of the proposed system analyzes the

consequence of dependent variables and independent

variables on TDD. It observes the nature of the

interaction between test numbers (TEST), quality of

external code (QLTY), and the relation between the

test numbers (TEST) and developers’ product

(PROD). This decreases the fault of enhanced

software either instantly or in the long run. The

benefits of TDD enhanced software quality and speed

up the testing process. This approach aims more

productive and make fewer efforts per line of code. By

decreasing code complexity supporting, the proposed

system validates the exactness of all codes and allows

developers assurance. It is used persistently over time

and motivates developers to create higher code

quality.

III. RELATED WORK

In [5], Authors (Y. Rafique and V. B Misic)

described on “The effects of test-driven development

on external quality and productivity: A meta-

analysis”. Authors reported that TDD improves

external quality when compared to a waterfall

approach. However, this improvement is not strong.

Further, TDD becomes disadvantageous for the subset

containing only academic studies in which it is

compared to an iterative, test-last (ITL) process

instead of a waterfall approach. This result suggests

that sequencing might have a negative effect on

external quality, which we haven’t observed.

Productivity results are more inconclusive in that the

authors report a small productivity hit for TDD when

comparing TDD with waterfall but the effect, even

though still small, is reserved when ITL is compared

with TDD.

In [14], Authors (H. Munir, K. Wnuk, K.

Petersen, and M. Moayyed) proposed on “An

experimental evaluation of test-driven development

vs. test-last development with industry professionals”.

The authors were developed that it intended to

compare the effect performed by TDD and TLD (Test-

Last Development) on the quality of internal and

external code, and developer’s product. For this aim, 7

user stories’ a programming exercise was carried out.

The results of the analysis by the approved test cases’

number: McCabe's Cyclomatic complexity, branch

coverage, the no: of code lines person/hour, and user

stories’ number described person/ hour. The tests

expressed fewer significant enhancements in accept of

TDD, by reducing the defects. In terms of

productivity, the tests indicate that TDD than TLD

slightly decrease average productivity.

In [15], Authors (M. Moayyed, H. Munir, and

K. Petersen) described on “Considering rigor and

relevance when evaluating test-driven development: A

systematic review”. Authors were developed that the

primary studies are considered together; however, the

nine better-rigors, better-relevance studies describe

that TDD enhances quality of external code, while

developer’ product is not effected. The 21 studies in

the alike classification of the basis analyze and this

replication are ambiguous both results.

IV. BACKGROUND THEORY

Test-Driven Development is a coding

technique. TDD accelerates the before time

development of tests, at the time alternates are

accepted and improved with functional components.

Kent Beck invents Test-Driven Development applies

to a form of programming although three actions are

exactly interlinked. Three activities are Coding,

Testing, and Design. At first, its key idea is to execute

early initial tests for the code, must be actualized but

the accurate feature of it used. One of the features of

software system requirement is tackled subtask or user

stories, which are designed to easily express and

understand. These can be easy to change by the end-

user as they like during the project’s handle time.

A. Test-Driven Development

The TDD process is expressed in Figure 1, and

includes the consecutively steps:

1. Write only one test-case

2. Run or perform this test-case. If this test-case fails,

go to step 3. If the test-case succeeds, go to step 1.

3. Refactor the performance to get the elementary

design possible.

4. Enable the minimal code to do the test-case run.

5. Run the test-case again. If it fails again, go to step

3. If the test-case succeeds, go to step 5.

6. Again, run the test-case, to certify that the

refactored application until passes the test-case.

If the test-case fails, go to step 3. If the test-case

passes, go to step 1, if there are still

requirements, left in the specification.

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Figure 1: Test-Driven Development flow

V. CONTRIBUTION

First stage, the original study of Test-Driven

Development has beneficial effects on the number of

unit-test written by the developers, the external code

quality and the developers’ productivity. In the second

stage, the authors studied the correlation between the

number of tests, the external code quality, and

productivity. TDD approach encourages developers to

write more tests and is a positive correlation between

the number of tests, quality, and productivity, and then

TDD would improve the overall quality and

productivity. The related work observed, if code

quality has a positive effect, productivity has a

negative effect, if productivity has a positive effect,

code quality has a negative effect. The proposed work

discovered, if code quality has a positive effect,

productivity has a slightly decrease effect, if

productivity has a positive effect, code quality has

fewer reduced effect.

VI. PROPOSED SYSTEM

In this proposed method the acceptance test

suite metric of regression analysis uses to measure the

no: of test numbers, quality of external code, and

developer product.

A. Research Questions

This system concentrates to evaluate two

outcomes on the following system: external code

quality and developer productivity.

RQ1 (RQ-QLTY): Does a higher number of

tests indicate higher quality?

RQ2 (RQ-PROD): Does a higher number of

tests indicate higher developer productivity?

The notion of external code quality in RQ-

QLTY and productivity in RQ-PROD are based on the

acceptance test suite metric of regression analysis.

B. Method

In the proposed system, the acceptance test

suite metric is used by analyzing to explore possible

interactions such as number of tests, external code

quality, and developer productivity. The acceptance

test suite metric is a form of mathematical regression

analysis. Regression analysis is used to investigate the

relationship between two or more variables and

estimate one variable based on the others. Regression

analysis is a powerful statistical method that allows for

analyzing the relationship between two or more

outcome variables of interest. QLTY and PROD are

the dependent variables. TEST is the independent

variable. QLTY defined as the percentage of

acceptance tests passed for the implemented tackled

tasks. PROD measured as the percentage of

implemented tackled tasks. Table 1 provides the raw

data used in the assessment. To compute this low-level

measure, an automated tool used by this system. The

limited-time necessary to complete the task had an

impact on the metric. In regression analysis, dependent

variables are established on the vertical y-axis, while

independent variables are established on the horizontal

x-axis.

Begin

Write Test Case

Perform Test

Case

Test

Pass

Refactor the code

Perform Test Case

Test

Pass

Yes

No

Yes

Code Cleanup

End

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

C. Test Numbers (TEST)

Test numbers (TEST) is identified as JUnit

assert statement numbers inside the unit test suite

written by the participants while tackling the task.

The numbers of test development as a single JUnit

assert statements. TEST assessed by the count of

the JUnit test cases. TEST is a ratio measure in the

range [0, ∞]. The formula for calculating TEST is

defined as [10]:

TEST = no: of subtasks out of result the no: of input

subtasks (1)

TEST = JUnit assert statement numbers inside the unit

test suite

Table 1: Summary of acceptance tests used to

calculate the metrics of Bowling Scorekeeper data-

sets [7].

Task Test Assert

T1 3 3

T2 3 3

T3 2 2

T4 3 10

T5 5 5

T6 6 6

T7 8 8

T8 5 5

T9 5 5

T10 4 4

T11 2 2

T12 3 3

T13 2 2

D. External code quality

The metric for external quality QLTY based on

the number of tackled subtasks (#TST) for a given task.

A subtask as tackled assesses if at least one assert

statement in the acceptance test suite associated with

that subtask passes. QLTY is a proportion measure in

the range 0 to 100.

The number of tackled subtasks (#TST) is

defined as:

#TST =

∑ {
1 𝐴𝑠𝑠𝑒𝑟𝑡𝑖(𝑃𝑎𝑠𝑠) > 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑛
𝑖=0

 (2)

#TST = the number of tackled subtasks

 n = the total number of subtasks

The formula for measuring QLTY is defined as

[8]:

QLTY =
∑ 𝑄𝐿𝑇𝑌𝑖

#𝑇𝑆𝑇
𝑖=0

#𝑇𝑆𝑇
 × 100 (3)

QLTYi = the ith tackled subtask’s quality

Where QLTYi is the quality of the ith tackled

subtask and QLTYi is defined as:

QLTYi =
#𝐴𝑠𝑠𝑒𝑟𝑡𝑖(𝑃𝑎𝑠𝑠)

#𝐴𝑠𝑠𝑒𝑟𝑡𝑖(𝐴𝑙𝑙)
 (4)

#Asserti (Pass) = the number of JUnit assertions

passing in the acceptance test suite associated with the

ith subtask

#Asserti (All) = the total number of JUnit

assertions in the acceptance test suite associated with

the ith subtask

For example, supposing that the thirteen

tackled subtasks (#TST = 13) assessed by a person, this

denotes that the thirteen tackled subtasks pass more

than one assert statement in the test suite. Assume us

that the acceptance test of the first analyzed tackled

task contains 3 assertions, out of results of three are

passing. The acceptance tests of the fourth tackled task

contain 10 assertions, out of results of three are

passing and so on.

Table 2: Solution of QLTY

Task Test Assert QLTY

T1 3 3 1

T2 3 3 1

T3 2 2 1

T4 3 10 0.3

T5 5 5 1

T6 6 6 1

T7 8 8 1

T8 5 5 1

T9 5 5 1

T10 4 4 1

T11 2 2 1

T12 3 3 1

T13 2 2 1

51 58 95

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

i.e. (QLTY4 =
#𝐴𝑠𝑠𝑒𝑟𝑡4(𝑃𝑎𝑠𝑠)

#𝐴𝑆𝑆𝐸𝑅𝑇4(𝐴𝑙𝑙)
 =

3

10
 = 0.3)

 (QLTY =
 ∑ 𝑄𝐿𝑇𝑌𝑖#𝑇𝑆𝑇

𝑖=1

#𝑇𝑆𝑇
 ×100

 =
1+1+1+0.3+1+1+1+1+1+1+1+1+1

13
 ×100 =95)

E. Productivity

The productivity metric (PROD) expresses the

amount of work effectively carried out by the subjects.

PROD is a proportion measure in the range 0 to100.

The metric of PROD is computed as follows [8]:

PROD =
#𝐴𝑠𝑠𝑒𝑟𝑡(𝑃𝑎𝑠𝑠)

#𝐴𝑠𝑠𝑒𝑟𝑡(𝐴𝑙𝑙)
 ×100 (5)

For sample, assume a tacked task with all of 58

assert statements enabled by a person in a test suite.

After compiling, the person’s outcome 51 asserts

statements are passing.

 i.e. (PROD =
#𝐴𝑠𝑠𝑒𝑟𝑡(𝑃𝑎𝑠𝑠)

#𝐴𝑠𝑠𝑒𝑟𝑡(𝐴𝑙𝑙)
 ×100 =

51

58
 × 100 = 88)

F. Assessment

The image below is a scatter plot. Scatter plots

are used when this paper want to show the relationship

between two variables. Scatter plots are known as

relationship plots because they show how two

variables are interrelated. This analytical tool is most

often applied to show data correlation between two

variables. This system expects that the regression

assessment of the tackled task compiled from the

quality of external code on test numbers by TDD

responds positively to questions RQ1. In the same

way, this system expects that the regression analysis

of the tackled task compiled from the developer

product on test numbers by TDD responds slightly

decrease to questions RQ2.

Figure 2: QLTY is on the function of TEST

In figure 2, the external code quality on the test

numbers is improved by measuring the acceptance test

suite metric of quality (QLTY).

Figure 3: PROD is on the function of TEST

In figure 3, the developer’s productivity over

the test numbers is slightly decreased by measuring the

acceptance test suite metric of productivity (PROD).

VII. COMPATIBILITY OF RESULT

In this portion, this paper presents the outcomes

acceptance test suite metric of regression analysis.

Further, a significant relation between TEST and

QLTY, as expressed in RQ1, with a positive was

found. Hence, scatter plot figure 2 is an arithmetically

expressive relationship between the number of tests

and external code quality. Additionally, a significant

relation between TEST and PORD, as expressed in

RQ2, with a somewhat down was found. So,

scatterplot figure 3 is an arithmetically expressive

correlation between the number of tests and

programmer productivity. In this study, the number of

tests is a good predictor for TDD programmer

productivity. Consequently, developer product on the

test numbers becomes lightly diminishment and

quality of external code on the test numbers becomes

improvement. Development time is relatively high in

the proposed work. It nearly takes as much as 16%

more time than that of related work. Proposed work

decreases the maintenance cost and overall increases

the productivity. There are as many as 52% more test

cases as of the related work. The related work codes

have a relatively small size. The inclusion of many

more test cases in the proposed work increases the size

of the code. The related work codes are simpler. The

cyclomatic complexity of the related work is relatively

smaller. The proposed work is relatively complex.

0

20

40

60

80

100

0 0.5 1 1.5 2 2.5

D
e
p

e
n

d
e
n

t
v
a

r
ia

b
le

 (
Q

L
T

Y
)

Independent variable (TEST)

TEST Vs QLTY

0

20

40

60

80

100

0 0.5 1 1.5 2 2.5D
e
p

e
n

d
e
n

t
v
a

r
ia

b
le

 (
P

O
R

D
)

Independent variable (TEST)

TEST Vs PORD

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

VIII. CONCLUSION

Development time is relatively high in the

proposed work. It nearly takes as much as 16% more

time than that of related work. Proposed work

decreases the maintenance cost and overall increases

the productivity. There are as many as 52% more test

cases as of the related work. The related work codes

have a relatively small size. The inclusion of many

more test cases in the proposed work increases the size

of the code. The related work codes are simpler. The

cyclomatic complexity of the related work is relatively

smaller. The proposed work is relatively complex.

This approach allows thorough unit testing

which enhances the quality of the software and

advances customer satisfaction. They help with

retaining and varying the code. Moreover, the number

of acceptance test cases passed and number defects

found through static code analysis are used to measure

the external code quality. All these measures are

consistent with the studies and will be considered as

standard measures. When this proposed system

assesses the acceptance test suite metric of regression

analysis, the result of developer productivity over the

number of tests is fewer decreased and the result of

external code quality over the number of tests is

increased in giving a fixed time-frame.

ACKNOWLEDGMENTS

This research paper is partially supported by

academic studies. Professionals were fit to implement

more effective with test-driven development.

Furthermore, this proposed system observes that the

measurement reveal different aspects of a

development approach in academic studies.

REFERENCES

[1] Causineou and Chartier, 2010; Outliers

Detection and Treatment: a Review,

International Journal of Psychological Research,

3(1): 58-67.}

[2] H. Kou, P. M. Johnson, and H. Erdogmus,

“Operational definition and automated inference

of test-driven development with Zorro,”

Automated Software Engineering, 2010.

[3] Shaweta Kumar, Sanjeev bansal, “Comparative

Study of Test driven Development with

Traditional Techniques”; International Journal of

Soft computing and Engineering (IJSCE);

ISSN:2231-2307,Volume-3, Issue-1, (March

2013).

[4] A.N. Seshu Kumar and S. Vasavi ; “Effective

Unit Testing Framework for Automation of

Windows Applications”; Aswatha Kumar M.et

al.(Eds); Proceedings of ICADC, AISC 174, pp.

813-822. Springerlink .com @ Springer India

2013

[5] Y. Rafique and V. B. Miˇsi´c, “The effects of

test-driven development on external quality and

productivity: A meta-analysis,” IEEE

Transactions on Software Engineering, vol. 39,

no. 6, pp. 835–856, 2013.

[6] Davide Fucci, Burak Turhan, “On the role of

tests in test- driven development: A

differentiated and partial replication”, Empirical

Software Engineering Journal (April 2014,

Volume 19, Issue 2, pp 277-302)

 [7] Tosun A., Dieste O., Fucci D., Vegas S., Turhan

B., Erdogmus H., Santos A., Oivo M., Toro K.,

Jarvinen J., & Juristo N. An Industry Experiment

on the Effects of Test-Driven Development on

External Quality and Productivity

[8] Fucci, D., Turhan, B., & Oivo, M. The Impact of

Process Conformance on the Effects of Test-

driven Development (ESEM2014) 8th Empirical

Software Engineering and Measurement, 2014

ACM/IEEE International Symposium on. Turin,

Italy.

[9] Fucci, D., Turhan, B., & Oivo, M. On the Effects

of Programming and Testing Skills on External

Qualityand Productivity in a Test-driven

Development Context (EASE2015) 19th

Evaluation and Assessment in Software

Engineering 2015 ACM/IEEE International

Conference on., Nanjing, China.

[10] Viktor Farcic , Alex Garcia ; “Java Test-Driven

Development”; First published: August 2015;

Production reference: 1240815; Published by

Packt Publishing Ltd.; Livery Place; 35 Livery

Street; Birmingham B3 2PB, UK. ISBN 978-1-

78398-742-9; www.packtpub.com; www.it-

ebooks.in

[12] Christine Sarikas (GENERAL EDUCATION)

https:// blog.prepscholar.com/independent-and-

dependent-variables; Feb 12, 2018.

[12] https://chartio.com/learn/charts/what-is-a-

scatter-plot/ Jan 9, 2019

[13] Svetlana Cheusheva; ttps://www.ablebits.com/

 office-add ins-blog/2019/01/09/add-trendline-

excel/ May 15, 2019.

 [14] H. Munir, K. Wnuk, K. Petersen, and M.

Moayyed, “An experimental evaluation of test

driven development vs. test last development

with industry professionals,” Proc. 18th Int. Conf.

Eval. Assess. Softw. Eng. - EASE ’14, pp. 1–10,

2014.

[15] M. Moayyed, K. Petersen, H. Munir.

Considering rigor and relevance when evaluating

test driven dvelopment: A systematic review.

Information and Software Technology, 2014.

